
A GPU-Accelerated Structurally-Symmetric Sparse Multifrontal Solver

A GPU-Accelerated Structurally-Symmetric Sparse Multifrontal Solver
Ryan Synk1 and Mentor: Pieter Ghysels1

Scalable Solvers Group, Lawrence Berkeley Lab

(Dated: 17 March 2020)

In this report, a GPU-accelerated sparse multifrontal solver for structurally symmetric ma-
trices is described. The implementation is created as part of the Structured Matrices Package
(STRUMPACK) and makes use of the CUDA API to achieve speedup of the dense linear
algebra operations. The implementation is tested on the Summit supercomputer against the
current version, which is parallelized via MPI and OpenMP on CPUs. The GPU-accelerated
implementation achieves significant speedup on a test problem.

I. INTRODUCTION

The problem of solving large sparse linear systems
is crucially important in high performance computing
and is a bottleneck in many engineering and scientific
computation codes. Linear solvers seek, given a matrix
A ∈ Rn×n and a vector b ∈ Rn, the solution vector
x ∈ Rn such that Ax = b. In many applications, sys-
tems where A ∈ Cn×n, and x, b ∈ Cn are also common.
A linear system is said to be sparse if most of the entries
in the matrix A are zero.

Most algorithms for solving these systems fall under
two categories: iterative and direct methods. The work
described in this report encompasses the implementation
of a direct solver known as the multifrontal method1.
This algorithm takes the problem of solving a large sparse
linear system and converts it to a problem involving dense
linear algebra on smaller matrices, known as fronts. This
algorithm parallelizes very well, and has since seen many
implementations involving parallelism. In 2016, Ghysels
et. al proposed a modification to the multifrontal method
involving compressing larger fronts via the use of Hierar-
chically Semi-Seperable (HSS) matrix representations.2

While HSS matrices are not the subject of the work in-
volved in this project, the software library which came
out of the work of Ghysels et. al, called the Structured
Matrices Package (STRUMPACK),3 was the subject of
most of the work involved.

In the multifrontal method, much of the computational
bottleneck comes from dense linear algebra operations.
Parallelism is frequently employed to reduce the overhead
of these computations, and this parallelism is usually
spread out over various CPU cores via OpenMP or MPI.
However, the use of Graphics Processing Units (GPUs)
has increased in high-performance computing following
the discovery that GPU architectures are well-suited to
quickly perform dense linear algebra operations4,5. Since
then, high-performance computing systems are being
built with more and more GPU accelerators in them,
and the DOE’s newest exascale supercomputer, Frontier,
will be built with four times as many GPUs as CPUs6.
Despite this, the STRUMPACK multifrontal solver cur-
rently has no GPU support, and the work performed this
summer sought to modify the software package so that
it could utilize these resources. Utilizing GPUs to accel-
erate the factorization of large fronts in the multifrontal
method has been the subject of previous study7,8, and
a 2016 paper of Hogg et. al developed an implemen-
tation where almost all of the dense linear algebra is

performed on the GPU9. Most of this previous work
has been on symmetric positive-definite and symmetric
indefinite cases — these factor A = LDLt for L unit
lower triangular — but the present report focuses on the
general structurally-symmetric sparse case, which seeks
a factorization A = LU for L unit lower triangular, U
upper triangular. Note we take ”structurally symmet-
ric” to mean a matrix whose pattern of non-zero entries
is symmetric. It was the aim of this work to not just ac-
celerate certain parts of the STRUMPACK multifrontal
solver, but to modify the software to put as much work
as possible on a GPU.

STRUMPACK is written in C++. In order to take
advantage of GPU resources, the code was modified us-
ing CUDA, the Nvidia GPU API. Specifically within this
API, the code uses CuBLAS, a CUDA API that performs
BLAS calls on the device, and CuSolver, which contains
kernels that mimic select LAPACK functions. All code
was tested using Summit, a supercomputer located in
the Oak Ridge National Lab. Each node of Summit con-
tains 6 Nvidia Tesla V100 GPUs, each containing 16GB
of memory, a 6MB L2 cache, and a 128KB L1 cache.

The structure of the report is as follows: section II
gives an overview of the multifrontal method, section III
details changes made to STRUMPACK, section IV gives
some numerical results, and section V contains conclud-
ing remarks and possible avenues for future study.

II. DETAIL OF ALGORITHM

This section gives a brief outline of the multifrontal
method. For a more detailed explanation, see [10], or
the original paper of Duff and Reid1. Much of the ex-
planation here is borrowed from [2] with the author’s
permission. The multifrontal method consists of three
phases:

• Reording - Where the order of the equations in
the matrix are changed

• Factoring - Which involves an assembly of the
frontal matrices and partial factorizations of each
front

• Solving - Where a forward then backward substi-
tution is performed to obtain a solution



A GPU-Accelerated Structurally-Symmetric Sparse Multifrontal Solver 2

A. Reorder

First, a fill-reducing permutation is applied to A in
order to reduce nonzero entries in the L and U factors.
Specifically, A ← PAP t for a permutation matrix P .
This permutation matrix is created by forming the ad-
jacency graph of A, then performing a nested dissection
reording. In STRUMPACK, the graph partitioning soft-
ware METIS11 is used.

Next, a data structure known as the elimination tree
is formed. Borrowing the definition from [2]:

Definition II.1 Assume A = LU , where A is an N ×N
sparse, structurally symmetric matrix. The elimination
tree of A is a tree with N nodes, where the ith node cor-
responds to the ith column of L and with the parent re-
lations defined by parent(j) = min{i | i > j and lij 6= 0}
for j = 1, · · · , N − 1

These nodes are grouped together using the structure
of the adjacency graph. Specifically, vertices from the
same seperator are grouped in one elimination tree node.
These nodes are known as frontal matrices, with a 2× 2
block structure:

Fi =

(
F11 F12

F21 F22

)

B. Factor

Once an ordering has been chosen and the tree is
formed, the factorization of the matrix begins. This con-
sists of a bottom-up topological traversal of the tree.
During this traversal, a node is assembled using infor-
mation from the nodes in its subtree, and then a partial
factorization is applied to the node. The assembly pro-
cess of a node i in the tree consists of taking the rows
and columns of A corresponding to the variables in the
F11, F12, and F21 blocks and summing them with the ex-
tended update matrices produced by the children of i:

Fi = Ai +
∑

ν∈child(i)

Ūν

Where

Ai =

(
A(Isepi , Isepi ) A(Isepi , Iupdi )

A(Iupdi , Isepi ) 0

)
And Ii = {Isepi , Iupdi } is the index set of row and col-
umn indices of Fi corresponding to the global matrix A
(after reordering). Once the node has been assembled,
a dense partial factorization is performed: F11 = LU .
After this, the next update matrix is formed by taking a
Schur complement: Ui = F22 − F21F

−1
11 F12.

In order to continue traversing the tree, the indices
of Ui must be manipulated to match those of its parent
in order to create Ūi. As an example, if two children’s
update matrices, U1 =

(
a1 b1
c1 d1

)
, and U2 =

(
a2 b2
c2 d2

)
have

subscript index sets Iupd1 = {1, 2} and Iupd2 = {1, 3},

then these matrices must be padded with zero rows and
columns to match the dimension of the parent:

Ū1+Ū2 =

a1 b1 0
a2 b2 0
0 0 0

+

a2 0 b2
0 0 0
c2 0 d2

 =

a1 + a2 b1 b2
a2 b2 0
c2 0 d2


This operation is known as the ”extend-add” operation
and can be written as U1 l↔ U2. This operation can be
used to define the relation between frontal matrices and
update matrices: for a node i with children ν1, · · · νq, we
have that Fi = Ai l↔ Uν1 l↔ · · · l↔ Uνq

Once the tree has been traversed and all the factors
are generated, the solve phase begins.

C. Solve

This phase finds the solution x to Ax = b by per-
forming a forward substitution using the L factor and a
backward substitution using the U factor. The forward
solution performs a bottom-up traversal of the tree, while
the backward solution uses a top-down traversal.

III. OUTLINE OF SOFTWARE CHANGES

There were a number of changes made to the code of
the STRUMPACK library in order to allow for the usage
of a GPU. This section details those changes, as well as
some of the problems faced in refactoring the code.

A. Data Transfer and Device Memory Overhead

Most of the computational bottleneck in the multi-
frontal method comes from the dense linear algebra oper-
ations performed in the factor phase. In STRUMPACK,
this dense linear algebra is performed via BLAS and LA-
PACK calls. Most of the effort of the project involved
finding ways to offload these dense linear algebra opera-
tions onto a GPU in order to increase speedup.

This offloading needs to be performed efficiently, how-
ever. An initial attempt at utilizing CUDA involved the
NVBLAS library, which provides ”drop-in” GPU accel-
eration to a given application. This software package is
designed to be linked with an application which makes
BLAS calls. It then intercepts those calls and performs
them on a GPU automatically. This approach actually
made the code much slower. A second attempt at uti-
lizing the CuBLAS API involved allocating/freeing sepa-
rate device memory and performing separate CuBLAS
kernel launches for each front. This, too, greatly in-
creased the factorization time of the code.

The problem here lies in the fact that at the bottom
of the elimination tree there can be a massive number of
fronts — each of which is usually quite small. Allocat-
ing and freeing separate memory for each of these fronts,
along with launching the necessary CuBLAS calls cre-
ated an extraordinarily high overhead for so many small



A GPU-Accelerated Structurally-Symmetric Sparse Multifrontal Solver 3

fronts. The objective became to offload the dense lin-
ear algebra to the device while simultaneously minimiz-
ing the number of kernel launches, device allocation/free
calls, and data transfers between host and device.

In the current model of the code, the factorization pro-
ceeds level-by-level in the elimination tree. This is op-
posed to the recursive elimination tree traversal that is
used in the CPU version of STRUMPACK — a level-by-
level traversal is more amenable to GPU parallelization.
For a given level of the tree, a pool of managed memory
is allocated for all of the fronts on that level, and all of
the fronts on the level above it. This memory pool is
reused throughout the elimination tree, and the memory
is only re-allocated if the next level needs more space,
which greatly reduces the number of device allocations
and frees. The managed memory model allows for au-
tomatic CPU/GPU memory transfers. Here, all of the
fronts on a given level are loaded onto the GPU, then a
kernel is launched which performs the necessary compu-
tations. If a given level contains n nodes, then the kernel
is launched with n thread blocks, one for each node.

B. Kernel and Streams

Because of the high overhead in performing opera-
tions on small fronts, the code behaves differently for
larger and smaller fronts. If the fronts on a level are
smaller than a set cutoff parameter, then those fronts
are all launched simultaneously on the GPU using a
custom kernel — each front is assigned a thread block,
and within each thread block the factorization is multi-
threaded. This custom kernel is not nearly as optimized
as the NVIDIA-written one, however, so if the fronts on a
level are large (larger than a set cutoff parameter), then
the fronts are handled using the CuBLAS library.

The custom kernel was designed to perform the neces-
sary dense linear algebra operations for each front. Fol-
lowing the steps of the multifrontal method, this kernel:

1. Performs a partial LU factorization with pivoting
on the F11 block

2. Triangular solves on the F12 and F21 blocks

3. Creates Schur complement update

These operations are performed simultaneously for all
of the small fronts on a level. Larger fronts are handled
via a CUDA stream. Streams allow for serial execution
of a series of kernels, and allow for an overlap between
computations performed on a GPU and memory trans-
fers from GPU to CPU. For larger fronts, a stream is
assigned to each front, and the stream launches the nec-
essary CuBLAS kernels for each step of the factorization
of the frontal matrix. Note that there is a limit on how
many streams can be launched (and a memory overhead
for creating them) which makes them less feasible for the
many small fronts towards the bottom of the elimination
tree. This necessitates the current split design. Cur-
rently, a fixed maximum number of streams is set – for
the tests, 20 was used. At each level, these streams are
created, and used to process the large fronts. In this way,

20 40 60 80 100 120 140 160

Size of Poisson Problem

10
-1

10
0

10
1

10
2

10
3

10
4

L
o

g
 o

f 
T

im
e

 i
n

 S
e

c
o

n
d

s

Size of Poisson Problem v Factorization Time

1 v100 GPU

7 IBM Power9 CPU

FIG. 1. Factor time results for varying-sized Poisson prob-
lems

0 2 4 6 8 10 12 14 16 18

Level of Elimination Tree

0

100

200

300

400

500

600

T
im

e
 o

f 
fa

c
to

ri
z
a

ti
o

n

Time of Factorization per Level in Elimination Tree

1 v100 GPU

7 IBM Power9 CPU

FIG. 2. Factor time per level in the elimination tree

if the number of large fronts on a level exceeds 20, then
those fronts are not processed completely in parallel, but
rather factored in chunks of 20.

IV. RESULTS

The current state of the code (parallelized only via
OpenMP and MPI on CPUs) was tested against the
newly-written GPU based code. This code was tested
using a 3d Poisson problem with dirichlet boundary con-
ditions. Specifically, we seek a function u : R3 → R on
the unit cube such that ∆u = f inside the cube and
u = g on the boundary of the cube for given functions f
and g. The matrix was calculated using the finite differ-
ence method on grids of increasing size. In the tests, the
CPU-parallelized code was ran on summit using 7 of the
IBM Power9 CPUs, while the CUDA code implemented
here was ran on Summit using 1 IBM Power9 CPU and
1 Nvidia Tesla V100 GPU.

In figure 1, the number k on the x axis is the size of the
mesh used in the finite difference method. In that sense,
the size of the linear system that needs to be solved is
k3 × k3. The y axis is the log of the time taken to factor



A GPU-Accelerated Structurally-Symmetric Sparse Multifrontal Solver 4

the matrix. As the figure shows, the GPU code scales sig-
nificantly better, being 2-3 times faster for large matrices.
That being said, for smaller problems, the CPU code is
still faster. This is due to the fact that, when there are
many small fronts, transfering the data to and from the
GPU is more expensive than actually performing the lin-
ear alebra operations. Future work will be performed to
optimize the code to perform better on smaller matrices.

Similar results are shown in figure 2. A similarly gen-
erated 1253× 1253 Poisson system is tested, and the fac-
torization times for various levels of the elimination tree
are shown. At the lower levels where there are many
small fronts, the CPU version performs slightly better,
but eventually is outperformed by the GPU code later
in the factorization. Interesting to note is the ”dip” at
the very end of the graph on the CPU: this is because at
the very top of the elimination tree there is only 1 front.
On this one front, the multifrontal method only performs
an LU factorization, and performs no triangular solve or
schur complement dense matrix multiplication. These
last two dense linear algebra operations are difficult for a
CPU, but the LU factorization can be performed quickly.

V. CONCLUSION

This report described a GPU-accelerated implementa-
tion of a sparse multifrontal solver. The GPU-accelerated
code, as well as the original version, can be found on the
STRUMPACK website3. The refactored code achieved
higher performance than the original code in a test case
involving Poisson’s equation.

Further work can be done to improve performance.
There are many optimizations that can be added to the
custom kernel, and more work needs to be done to im-
prove the speed of the computations on smaller matri-
ces. Additionally, STRUMPACK was designed to incor-
porate a matrix factorization using Hierarchically Semi-
Seperable (HSS) matrix representations, but as it stands
right now, none of the HSS factorizations occur in the

GPU-accelerated code. Some research in the field has
gone into implementing HSS compression algorithms on
GPUs, and it could be possible to incorporate these tech-
niques into STRUMPACK as well.

ACKNOWLEDGMENTS

Special thanks to my mentor, Pieter Ghysels, for his
invaluable help and guidance this summer. Thanks to
Donald Wilcox and Kevin Gott for their helpful advice
on GPU architectures and CUDA. To all of the members
of the Scalable Solvers Group at the Berkeley Lab, espe-
cially Sherry Li, David Brown, Jocelyn Cho, Wissam Sid
Lakhdar, and Gustavo Chávez. Lastly, thanks to Work-
force Development & Education at the Berkeley Lab, for
creating the BLUR program and funding my research.

This work was prepared in partial fulfillment of the re-
quirements of the Berkeley Lab Undergraduate Research
(BLUR) Program, managed by Workforce Development
& Education at Berkeley Lab.

1I. S. Duff and J. K. Reid, ACM Trans. Math. Softw. 9, 302 (1983).
2P. Ghysels, X. Li, F. Rouet, S. Williams, and A. Napov,
SIAM Journal on Scientific Computing 38, S358 (2016),
https://doi.org/10.1137/15M1010117.

3P. Ghysels, S. Li, G. Chávez, and Y. Liu, “Strumpack,” https:

//github.com/pghysels/STRUMPACK (2014).
4E. S. Larsen and D. McAllister, in Proceedings of the 2001
ACM/IEEE Conference on Supercomputing, SC ’01 (ACM, New
York, NY, USA, 2001) pp. 55–55.

5K. Fatahalian, J. Sugerman, and P. Hanrahan, in Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, HWWS ’04 (ACM, New York, NY, USA,
2004) pp. 133–137.

6https://www.olcf.ornl.gov/frontier (2019).
7R. F. Lucas, G. Wagenbreth, D. M. Davis, and R. Grimes,
in High Performance Computing for Computational Science –
VECPAR 2010, edited by J. M. L. M. Palma, M. Daydé, O. Mar-
ques, and J. C. Lopes (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2011) pp. 71–82.

8G. P. Krawezik and G. Poole (2011).
9J. D. Hogg, E. Ovtchinnikov, and J. A. Scott, ACM Trans. Math.
Softw. 42, 1:1 (2016).

10J. W. H. Liu, SIAM Rev. 34, 82 (1992).
11G. Karypis and V. Kumar, SIAM J. Sci. Comput. 20, 359 (1998).

http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/ 10.1137/15M1010117
http://arxiv.org/abs/https://doi.org/10.1137/15M1010117
https://github.com/pghysels/STRUMPACK
https://github.com/pghysels/STRUMPACK
http://dx.doi.org/10.1145/582034.582089
http://dx.doi.org/10.1145/582034.582089
http://dx.doi.org/10.1145/1058129.1058148
http://dx.doi.org/10.1145/1058129.1058148
http://dx.doi.org/10.1145/1058129.1058148
http://dx.doi.org/10.1145/2756548
http://dx.doi.org/10.1145/2756548
http://dx.doi.org/10.1137/1034004
http://dx.doi.org/10.1137/S1064827595287997

	A GPU-Accelerated Structurally-Symmetric Sparse Multifrontal Solver
	Abstract
	Introduction
	Detail of Algorithm
	Reorder
	Factor
	Solve

	Outline of Software Changes
	Data Transfer and Device Memory Overhead
	Kernel and Streams

	Results
	Conclusion
	Acknowledgments


